- StarRocks
- 产品简介
- 快速开始
- 表设计
- 数据导入
- 数据提取
- 使用StarRocks
- 管理手册
- 参考手册
- SQL参考
- 用户账户管理
- 集群管理
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE RESOURCE GROUP
- CREATE FILE
- DROP FILE
- ENTER
- INSTALL PLUGIN
- LINK DATABASE
- MIGRATE DATABASE
- SHOW BACKENDS
- SHOW BROKER
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW MIGRATIONS
- SHOW PLUGINS
- SHOW TABLE STATUS
- SHOW FILE
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER TABLE
- ALTER VIEW
- BACKUP
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE DATABASE
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- RECOVER
- RESTORE
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- DML
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- CREATE ROUTINE LOAD
- SELECT
- SHOW ALTER
- SHOW BACKUP
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- 数据类型
- 辅助命令
- 函数参考
- 日期函数
- convert_tz
- curdate
- current_timestamp
- curtime
- datediff
- date_add
- date_format
- date_sub
- date_trunc
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- from_days
- from_unixtime
- hour
- minute
- month
- monthname
- now
- second
- str_to_date
- timediff
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- weekofyear
- year
- hours_diff
- minutes_diff
- months_diff
- seconds_diff
- weeks_diff
- years_diff
- quarter
- timestamp
- time_to_sec
- str2date
- microseconds_add
- microseconds_sub
- 加密函数
- 地理位置函数
- 字符串函数
- append_trailing_char_if_absent
- ascii
- char_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- rtrim
- money_format
- null_or_empty
- regexp_extract
- regexp_replace
- repeat
- reverse
- right
- rpad
- split
- split_part
- starts_with
- strleft
- strright
- hex
- unhex
- substr
- space
- parse_url
- JSON 函数
- JSON 函数和运算符
- JSON 构造函数
- JSON 查询和处理函数
- JSON 运算符
- get_json_double
- get_json_int
- get_json_string
- 模糊/正则匹配函数
- 工具函数
- 聚合函数
- Bitmap函数
- 数组函数
- bit函数
- cast函数
- hash函数
- 条件函数
- 百分位函数
- 数学函数
- 日期函数
- 系统变量
- 错误码
- 系统限制
- SQL参考
- 常见问题解答
- 性能测试
- Release Notes
系统架构
系统架构图
StarRocks的架构简洁,整个系统的核心只有FE(Frontend)、BE(Backend)两类进程,不依赖任何外部组件,方便部署与维护。同时,FE和BE模块都可以在线水平扩展,元数据和数据都有副本机制,确保整个系统无单点。
Frontend是StarRocks的前端节点,负责管理元数据,管理客户端连接,进行查询规划,查询调度等工作。FE根据配置会有两种角色:Follower和Observer。
- Follower会通过类Paxos的BDBJE协议选主出一个Leader(实现选主需要集群中有半数以上的Follower实例存活),只有Leader会对元数据进行写操作。非Leader节点会自动的将元数据写入请求路由到Leader节点。每次元数据写入时,必须有多数Follower成功才能确认是写入成功。
- Observer不参与选主操作,只会异步同步并且回放日志,主要用于扩展集群的查询并发能力。每个FE节点都会在内存保留一份完整的元数据,这样每个FE节点都能够提供无差别的服务。
Backend是StarRocks的后端节点,负责数据存储以及SQL执行等工作。
数据存储方面,StarRocks的BE节点都是完全对等的,FE按照一定策略将数据分配到对应的BE节点。BE负责将导入数据写成对应的格式以及生成相关索引。
在执行SQL计算时,一条SQL语句首先会按照具体的语义规划成逻辑执行单元,然后再按照数据的分布情况拆分成具体的物理执行单元。物理执行单元会在数据存储的节点上进行执行,这样可以避免数据的传输与拷贝,从而能够得到极致的查询性能。
StarRocks提供MySQL协议接口,支持标准SQL语法。用户可通过MySQL客户端方便地查询和分析StarRocks里的数据。
数据管理
在StarRocks里,一张表的数据会被拆分成多个Tablet,而每个Tablet都会以多副本的形式存储在BE节点中。StarRocks通过分区、分桶两种划分方式将Table划分成Tablet。通过分区机制(Sharding),一张表可以被划分成多个分区,如将一张表按照时间来进行分区,粒度可以是一天,或者一周等。一个分区内的数据可以根据一列、或者多列进行分桶,将数据切分成多个Tablet。用户可以自行指定分桶的大小。StarRocks会管理好每个Tablet副本的分布信息。
Table数据划分 + Tablet三副本的数据分布
由于一张表被切分成了多个Tablet,StarRocks在执行SQL语句时,可以对所有Tablet实现并发处理,从而充分的利用多机、多核提供的计算能力。此外,由于每个表可以有不同的表数据切分方式,根据每个表数据量的不同,切分成的Tablet数也可以不同。这样就能够实现在一个大规模集群内,对于不同的表使用不同的资源来进行服务。用户也可以利用StarRocks数据的切分方式,将高并发请求压力分摊到多个物理节点,从而可以通过增加物理节点的方式来扩展系统支持高并发的能力。
Tablet的分布方式与具体的物理节点没有相关性。在BE节点规模发生变化时,比如在扩容、缩容时,StarRocks可以做到无需停止服务,直接完成节点的增减。节点的变化会触发Tablet的自动迁移。当节点增加时,一部分Tablet会在后台自动被均衡到新增的节点,从而使得数据能够在集群内分布的更加均衡。在节点减少时,下线机器上的Tablet会被自动均衡到其他节点,从而自动保证数据的副本数不变。所以,管理员能够非常容易的实现StarRocks的弹性伸缩的操作,不需要手工进行任何数据重分布的操作。
StarRocks支持Tablet多副本存储,默认副本数为三个。多副本够保证数据存储的高可靠,以及服务的高可用。在使用三副本的情况下,一个节点的异常不会影响服务的可用性,集群的读、写服务仍然能够正常进行。另外,增加副本数还有助于提高系统支持高并发查询的能力。