- StarRocks介绍
- 快速开始
- 表设计
- 数据导入
- 数据提取
- 使用StarRocks
- 参考手册
- SQL参考
-
用户账户管理
-
集群管理
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER CLUSTER
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE CLUSTER
- CREATE FILE
- DROP CLUSTER
- DROP FILE
- ENTER
- INSTALL PLUGIN
- LINK DATABASE
- MIGRATE DATABASE
- SHOW BACKENDS
- SHOW BROKER
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW MIGRATIONS
- SHOW PLUGINS
- SHOW TABLE STATUS
- UNINSTALL PLUGIN
-
DDL
- ALTER DATABASE
- ALTER TABLE
- ALTER VIEW
- BACKUP
- CANCEL ALTER
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE DATABASE
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- RECOVER
- RESTORE
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
-
DML
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- ROUTINE LOAD
- SELECT
- SHOW ALTER
- SHOW BACKUP
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
-
数据类型
-
辅助命令
-
- 函数参考
- 日期函数
- convert_tz
- curdate
- current_timestamp
- curtime
- datediff
- date_add
- date_format
- date_sub
- date_trunc
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- from_days
- from_unixtime
- hour
- minute
- month
- monthname
- now
- second
- str_to_date
- timediff
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- weekofyear
- year
- 地理位置函数
- 字符串函数
- append_trailing_char_if_absent
- ascii
- char_length
- concat
- concat_ws
- ends_with
- find_in_set
- get_json_double
- get_json_int
- get_json_string
- group_concat
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- regexp_extract
- regexp_replace
- repeat
- reverse
- right
- rpad
- split_part
- starts_with
- strleft
- strright
- 聚合函数
- Bitmap函数
- 数组函数
- cast函数
- hash函数
- 日期函数
- 系统变量
- 错误码
- 系统限制
- SQL参考
- 管理手册
- 常见问题解答
- 性能测试
- Release Notes
StarRocks
StarRocks是什么
- StarRocks是新一代极速全场景MPP数据库。
- StarRocks充分吸收关系型OLAP数据库和分布式存储系统在大数据时代的优秀研究成果,在业界实践的基础上,进一步改进优化、升级架构,并增添了众多全新功能,形成了全新的企业级产品。
- StarRocks致力于构建极速统一分析体验,满足企业用户的多种数据分析场景,支持多种数据模型(明细模型、聚合模型、更新模型),多种导入方式(批量和实时),可整合和接入多种现有系统(Spark、Flink、Hive、 ElasticSearch)。
- StarRocks兼容MySQL协议,可使用MySQL客户端和常用BI工具对接StarRocks来进行数据分析。
- StarRocks采用分布式架构,对数据表进行水平划分并以多副本存储。集群规模可以灵活伸缩,能够支持10PB级别的数据分析; 支持MPP框架,并行加速计算; 支持多副本,具有弹性容错能力。
- StarRocks采用关系模型,使用严格的数据类型和列式存储引擎,通过编码和压缩技术,降低读写放大;使用向量化执行方式,充分挖掘多核CPU的并行计算能力,从而显著提升查询性能。
StarRocks特性
StarRocks的架构设计融合了MPP数据库,以及分布式系统的设计思想,具有以下特性:
架构精简
StarRocks内部通过MPP计算框架完成SQL的具体执行工作。MPP框架本身能够充分的利用多节点的计算能力,整个查询并行执行,从而实现良好的交互式分析体验。 StarRocks集群不需要依赖任何其他组件,易部署、易维护,极简的架构设计,降低了StarRocks系统的复杂度和维护成本,同时也提升了系统的可靠性和扩展性。 管理员只需要专注于StarRocks系统,无需学习和管理任何其他外部系统。
全面向量化引擎
StarRocks的计算层全面采用了向量化技术,将所有算子、函数、扫描过滤和导入导出模块进行了系统性优化。通过列式的内存布局、适配CPU的SIMD指令集等手段,充分发挥了现代CPU的并行计算能力,从而实现亚秒级别的多维分析能力。
智能查询优化
StarRocks通过CBO优化器(Cost Based Optimizer)可以对复杂查询自动优化。无需人工干预,就可以通过统计信息合理估算执行成本,生成更优的执行计划,大大提高了Adhoc和ETL场景的数据分析效率。
联邦查询
StarRocks支持使用外表的方式进行联邦查询,当前可以支持Hive、MySQL、Elasticsearch三种类型的外表,用户无需通过数据导入,可以直接进行数据查询加速。
高效更新
StarRocks支持多种数据模型,其中更新模型可以按照主键进行upsert/delete操作,通过存储和索引的优化可以在并发更新的同时实现高效的查询优化,更好的服务实时数仓的场景。
智能物化视图
StarRocks支持智能的物化视图。用户可以通过创建物化视图,预先计算生成预聚合表用于加速聚合类查询请求。StarRocks的物化视图能够在数据导入时自动完成汇聚,与原始表数据保持一致。并且在查询的时候,用户无需指定物化视图,StarRocks能够自动选择最优的物化视图来满足查询请求。
标准SQL
StarRocks支持标准的SQL语法,包括聚合、JOIN、排序、窗口函数和自定义函数等功能。StarRocks可以完整支持TPC-H的22个SQL和TPC-DS的99个SQL。此外,StarRocks还兼容MySQL协议语法,可使用现有的各种客户端工具、BI软件访问StarRocks,对StarRocks中的数据进行拖拽式分析。
流批一体
StarRocks支持实时和批量两种数据导入方式,支持的数据源有Kafka、HDFS、本地文件,支持的数据格式有ORC、Parquet和CSV等,StarRocks可以实时消费Kafka数据来完成数据导入,保证数据不丢不重(exactly once)。StarRocks也可以从本地或者远程(HDFS)批量导入数据。
高可用易扩展
StarRocks的元数据和数据都是多副本存储,并且集群中服务有热备,多实例部署,避免了单点故障。集群具有自愈能力,可弹性恢复,节点的宕机、下线、异常都不会影响StarRocks集群服务的整体稳定性。 StarRocks采用分布式架构,存储容量和计算能力可近乎线性水平扩展。StarRocks单集群的节点规模可扩展到数百节点,数据规模可达到10PB级别。 扩缩容期间无需停服,可以正常提供查询服务。 另外StarRocks中表模式热变更,可通过一条简单SQL命令动态地修改表的定义,例如增加列、减少列、新建物化视图等。同时,处于模式变更中的表也可也正常导入和查询数据。
StarRocks适合什么场景
StarRocks可以满足企业级用户的多种分析需求,包括OLAP多维分析、定制报表、实时数据分析和Ad-hoc数据分析等。具体的业务场景包括:
- OLAP多维分析
- 用户行为分析
- 用户画像、标签分析、圈人
- 高维业务指标报表
- 自助式报表平台
- 业务问题探查分析
- 跨主题业务分析
- 财务报表
- 系统监控分析
- 实时数据分析
- 电商大促数据分析
- 教育行业的直播质量分析
- 物流行业的运单分析
- 金融行业绩效分析、指标计算
- 广告投放分析
- 管理驾驶舱
- 探针分析APM(Application Performance Management)
- 高并发查询
- 广告主报表分析
- 零售行业渠道人员分析
- SaaS行业面向用户分析报表
- Dashbroad多页面分析
- 统一分析
- 通过使用一套系统解决多维分析、高并发查询、预计算、实时分析、Adhoc查询等场景,降低系统复杂度和多技术栈开发与维护成本。